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SUMMARY

A discussion of the longitudinal motion of an airframe is presented.
General relationships between the stability derivatives of the airplane
and the single rotor helicopter are considered. It is shown that the
basic character of the longitudinal motion is primarily determined by
the angle of attack stability and the velocity stability. The variation
in the modes of motion produced by these two stability derivatives is
presented.

Consideration of the relationships between the flight variables in

the modes of motion is included.




SYMBOIS

Acceleration due to gravity-
Moment of Inertis of aircraft sbout center of gravity.

Pitching moment about the center of gravity, positive
nose up. :

Rate of change of pitching moment with variable indi-
cated in subscript, the others held constant.

Pitching moment divided by moment of inertia (£:l) H
mass of aircraft. - I

Time
Flight velocity
Weight of aircraft

Horizontal force along an axis fixed to the aircraft,
initially aligned with the wind, positive forward.

Rate of change of horizontal force with variable indi-
cated in subscript, the others held constant.

Horizontal force divided by the mass of the aircraft.(?%% )

Vertical force, perpendicular to :ﬁ., positive down-
ward.

The rate of change of vertlical force with the variable
indicated in the subscript, the others held constant.

Vertical force divided by the product of the mass of
the alrcraft and the trim velocity. (_JEL___)

Aircraft angle of attack,positive nose up.
Root of characteristic equation.
Alrcraft pitch angle, positive nose up.

Real part of root of characteristic equation (damping
of oscillation),

Tmaginary part of root of characteristic equation
(frequency of oscillation).

Control deflection.
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Subscripts and superscripts

b ( )o 1initial or trim value.
A( ) perturbation from initial value.

a quantity representing the magnitude and phase of a vari-

[
able.

( ) derivative with respect to time.




INTRODUCTION

The genersl nature of the transient longitudinal motion of con-
ventional subsonic girplanes has been well known for a number of years.
The classical motion consists of two oscillatory modes, one proceeding
at approximately constant velocity (referred to as the short period),
and the other proceeding at approximstely constant angle of attack
(referred to as the phugoid). However, the restrictions on the aerody-
namic¢ stability derivatives for the occurrence of this type of motion do
not appear to be well known. Many other flying machines, the single
rotor helicopter, for example, exhibit dynamics considerably different
from this classical pattern. ©Since the longitudinal motion of both
of these types of aircraft, and other flying machines, can be described
by essentially the same equations of motion, it would be expected that
there would exist a number of basic similarities in the transient motion.

It is the purpose of this report to provide a generasl viewpoint
for the longitudinal dynamics of an gircraft by indicating and utili-
zing the fundamental similarities that usually exist. The basic re-
strictions on the aerodynamic stability derivatives necessary for the
cccurrence of classical longitudinal motion are indicated. Root locus
technigues (Reference 1 & 9) are used to present, in a general way, the
influence of the static stabllity derivatives. Only the terms which
contribute to the essential features of the dynamics will be considered.
Thus some terms ususlly included in stability analysis are neglected,

since they contribute small differences to the motion.
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Also discussed is the variasble content of each mode, which is an-
other property of the equations of motion. This characteristic of the
equations makes it possible to obtain a good physical picture of each
mode, and to determine the variables and the stability;derivatives that
are of importance in each mode.

The typical longitudinal modes of the single rotor helicopter are
discussed. It will be seen that many types of rotor lifted craft fall
into this category, and that certain classes of. dynamics are more or

less inevitable.
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DISCUSSION

The conventional linearized rigid-body equations which describe
the perturbed longitudinal airframe motions about a straight and level

flight path, may be written in the following form:

Ko aw - maw + X ax + Xx ax + Xg a6 - \Wae = X8
ZoAu + o AX + (Z;(“-muo)zﬁx + (mue+ Zé}&ew g8

Muauw + Maao + My ax + Mgae - Tas = MgS (1)

The coordinate system is initially aligned with the relative wind and
is fixed to the body. The X axis is taken positive forward and the
EE axis positive downward. The control response will not be con-
sidered. Only the character of the homogeneous equations is investi-
gated.

In order to describe the longitudinal motion of the helicopter
with these equations, it is necessary to make additlonal assumptions
to the assumptions implicit in this form of the eguations.

1, Coupling effects between the longitudinal and lateral motions
are assumed to be negligible. The helicopter differs in this respect
from the airplane due to the fact that the rotor is not symmetric, and
thus aerodynamic coupling is present. The lateral motion of the heli-
copter thus produced is assumed to have a small effect on the longi-

tudinal motion.




2. The rotor reacts instantaneously to changes in flight varia-
ables, i.e., its perturbed position in space can be described by the
instantaneous values of A , AW , and 1329 . This assumption
is valid for investigations of the transient dynamics of the heli-
copter, since the natural frequency of the blade flapping motion is
much higher than the natural frequency of the fuselage motion.

3. The rotational speed of the rotor is constant. It is assumed
that rotor speed variations willl not influence the basic character of
the motion, which is of primary concern here.

A number of terms included in the above equations are, in general,
not important, and will be neglected in this analysis. These are
Xg AS ; Zead » Ky Ax and Zy AKX . Also, the term in the
moment equation P4&‘48< will be neglected. The derivative V4;( con-
tributes primarily to the damping of the short period motion and does
not influence the basic character of the motion. Therefore, consider-

ation of the dynamics will be restricted to the following equations:

Kuaw - maw + X a0 - WAS = O

Zuaw + ZxAx — Mg A% + Mue AB = O

Moaw + My ax + Mgae - Tae = © (2)

For the following discussion it is convenient to divide each equation

by its inertia term. Thus equations (2) are to be written as:

¢
i

YAl — AW + X AX — %Ae = O
Zw AW * Zox AX -~ AX + AD =

TMuwaw + My AX + MG A8 — &S = © (28)




Since these differential equations are linear with constant co-

efficients, the solution will be of the form Ao(t)=(x, zx‘:‘ N

AB= O, Q'?‘t s AuL=LW, Q.XE . Substituting these expressions into

T
the differential equations, canceling out Qlk , a set of algebraic
equations in three unknowns A 1 e, > \.L.‘ and the parameter >\ is

obtained:

(x&"’ >\)LL| ¥ KKy — %9. = 0O
Zu e, + (Zo(—%)o(n + AB, = O

Mu Uy + Ma X, + (M= M) X8,=0 (3)
It is a property of these equations that there can be non-zero
values of 0(,, B 9. and WLy 1f, and only if, the determinant of the

coefficients of these quantities equals zero, i.e.:

(Yw— N Xot -9
X Lo (Zax— k) >\ =0
M M (mé“%)))\ . (L)

Expansion of this determinant results in a fourth order equation in 7\ g
the roots of which are called charscteristic values or modes of the
system. The individual values of }\ , 1.e., the modes indicate the
nature of the transient motion, e.g., a complex pair of values of )\
represents an oscillation.

Now to each value of )\ (each complex pair in the case of com-
plex roots) there corresponds a relationship between X - 9D and

LL’G . However, 1t is possible only to solve for ratios of these
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quantities, since equations (3) are homogeneous. Thus the ratios QZ}
0

and-lé% (referred to here as mode ratios) can be determined for each
;\ and do not depend upon the input. (The absolute magnitudes, i.e.,
the @a ’S depend upcn the input). ‘%: and %.! which, in general,
are complex numbers indicate the magnitude and phase relationship be-
tween the independent variasbles in each mode. As a result, a good
physical picture of the mode and an estimate of the important terms
in the equations of motion with respect to each mode can be obtained.

This analysis will indicate the general nature of >\ and the
corresponding variable relationships as a function of the stability
derivatives,

In the following discussion it is essential to note the distinction
between the static stability of the alrcraft, and the static stagility
derivatives.

The static stability of the aircraft can be defined as the change
in pitching moment due to a change in velocity, under the condition
that the vertical force is maintasined equal to the weight. The airplane
is statically stable 1f an increase in speed produces a nose up moment.

From equations (2a) then, an expression for the static stability of the

aircraft can be determined;

My, AWML + "Ny Dl = AN : ,
where
Lu.auv. + Laaadk = O
thus /
— rr——— == m e— =3 m—— — )
o B - (muza ez




The term (M Zx —My Zu ) 18 the coefficient of 2% in the
characteristic equation. For the sign convention used here; the air-
plane is statically stable 1f Mg Zu — My Zg 7 O - For the
helicopter in hovering, this reduces to “YMw » O 0

Thus the static stability of the aircraft depends on both the
static stability derivatives, M and Mw , as well as the force
derivatives Z ¢ and Z w

In the following, YN will be referred to as angle of attack
stability and ~YM as velocity stability, whereas the static sta-
bility of the aircraft is %E%i , the total derivative of pitching -
moment with respect to velocity, with the vertical force maintained
egqual to the weight.

Before proceeding further, various 2 x 2 minors in the 3 x 3 de-
terminant (4) will be identified. These minors represent limiting
cases of the three degree of freedom dyramics, involving only two
degrees of freedom, and may or may not represent s good approximstion
to a mode of the three degree of freedom dyrnamics. The discussion
following will indicate when these approximations are valid. Three
minors are identified, one closely associated with the helicopter,
the others with the airplane.

1. Hovering minor.

Y- A -
Mmu me-MN | T @ (5)

This mivor arises from the assumption that perturbstions in aungle of
attack (vertical velocity in hovering} do not have significant influ-
ence in the horizontal force and moment equations. The term'hovering"

10




is used to identify this minor, since it describes the dynamics of the

~ helicopter near hovering flight, but will, of course, describe the dy-
namics of any aircraft in forward flight that obeys these assumptions.
The locus of roots to this minor depend primarily on the magnitu@ie of
the velocity stability ( " wu. ) since the relative values of K . and
the damping in pitch (Mm@ ) will be similar for most aireraft. Physi-
cally, it would be expected that if the equations are uncoupled (“M_=0)
the dynamics would consist of a rapid convergence in pitching rate (W§g),
and a slow convergence in velocity ( Xu.,) and therefore ImMgl » 1Xwl .
A degree of freedom is considered uncoupled here in the sense that the
root associated with the uncoupled degree of freedom can be determined

.
from one equation. The term —%Ae is from this viewpoint, a forcing
function in the horizontal force equation wvhen My =0© , and, of
course, influences the control response but does not effect the roots
of the characteristiec equation. Only velocity stability (an increase
in velocity produces s nose up moment) will be considered. This is
typical of the single rotor helicopter. Thus the locus of roots of

this minor is_obtained from the characteristic equation

A (mé—“ >\>(?§u,*— A)ﬂ- mu.ca,=o

11
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Figure 1: Hovering Dynamics: Locus of roots for increasing
Velocity Stability.

From Figure 1 it can be seen that the velociity stability produces an
oscillation which becomes shorter in period and unsteble as the ve-
locity stability is increased. In general, the region of stability
is very small and any apprecisble value of YYNu will cause the oscil-
latory instability typical of the hovering helicopter. A description
of thils oscillation from a physical viewpoint can be found in Reference
(2). The magnitude of the My, above which the motion is unstable can
be determined from Routh's Discriminant. It igs Muw= -~ %u m'éz. These
dynamics will be characteristic of most rotor lifted aircraft in hover—.
ing, and unsatisfactory dynamics of aircraft in hovering are more or
less inevitable unless Yw. can be maintained at a small value. Wu
provides a small stabilizing effect on the oscillation, and a small
range of M. for which the machine could be dynamically stable. The
pitch damping ( M@ ) also acts to stabilize the motion and its influ-
ence 1s dependent uponl ¥ wu.. to some extent.

12




Note that although the velocity stability is stable in a static
sense it is destsbilizing in a dynamic sense. °
Expanding (L) along the X column,the three degree of freedom
characteristic equation can be written as:
Zu A | Y- > —<ar

. = ¥ | +G2a-N)
M (Mme-2)% M (Mme-A)\

Yue— A Y

Z )\

In many cases X¢ will be small and the characteristic equation,

in litersl terms becomes
(10( = >\> [\\Dﬁﬂlmcr mmc’gj\ — Mx [ P\—uxaogd. h’\\nc'r_] = 0 (6)

Thus 85 x> O , the dynamics of the machine tend towards this
minor.

2. Classical Phugoid Minor:

(‘?‘»u..w)) —or

Zoa )\

This mincr describes the motion of the aircraft when the angle of
attack influence is swall in the horizontal and vertical force e-

| cuations, and is usually a good approximation to one mode of the




dynamics of an alrcraft or helicopter possessing a large amount of angle
of attack stability ( YNy ) as can be seen from equation (6). The nature
of the characteristic rootg of this minor depend primarily on Z.. since
Xu. being a function of the drag of the machine, will be of the same
sign and of similar magnitude on most aircraft. For a subsonic ailrplane
Z\. is salways negative. However , in the helicopter, Z ., may be either
positive or negative, depending upon the flight condition.- (References
3, 4, and 5). If Zw_ is negative, i.e., a lift increase with an in-
crease in speed, the roots will consist of two convergences tending to

a stable oscillation as Zwu increases. If Z_ is positive, the
roots consist of a convergence and a divergence. The former is general-
ly the situation at low trim velocities and the latter at high trim ve-

locities for s helicopter. The locus of roots is therefore:

L
Lift increasge with
increase in velocity Xuine. Yo dee
— Lift loss with in- * f
crease in velocity
A U N SN
pS¥
/

Figure 2:; Classical Phugoid Dynamics
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Variation of Xu. from its original value moves the roots on the arc
of a circle centered at the origin, when the initial roocts are oscil-
latory.,

This case is fundamentally different from the hovering minor al-~
though in both cases the angle of attack influence was assumed to be
small. This 1is due to the fact that different equations are involved.
Thus even though the angle of attack variation is small, one must be
careful to choose the eguations in which the forces or moments pro-
duced by the angle of attack change are small compared to the other
terms in the equation. The selection of the proper equations for an
approximation follow directly from determination of mode ratios.

3. Classical Short Period Minor:

Zot— N !
= O

Mo Mg—A |
This minor describes the short time dynamics of an aircraft, that is,
the motion prior to the time that the velocity change has increased
to a sufficient magnitude to influence the dynamics. In genersal, if
the frequency of this motion is high and well damped it will represent
a good approximetion to one pair of roots of the three degree of free-
dom characteristic equation, since the oscillation would ensue before
a significant velocity change occurs. If the frequency is low this
minor may not be a good approximation to roots of the characteristic

equation but may still approximate the short time dynemics of the air-

craft.
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As mentioned ‘Mg will in general be considerably larger than
Xu. for a mejority of aircraft and helicopters. The 1ift curve
slope of the aircraft { Z.o ) will be of & similar magnitude as Mg
representing in an uncoupled situation, a rapld convergence in angle
of attack. Thus the roots of this minor will depend, to a large ex-
tent, upon the magnitude and sign of YY) as shown on the following
root locus. Also indicated are the influences of variation of Z
and Mg in an oscillatory case. An YN g change moves the roots on

the arc of a circle centered at Zg and vice versa.

—r
T
. g
_.*-_—._.g. -~
Zo Mg

--== gngle of attack instability
angle of attack stability

Figure 3: Classical Short Period Dynamics
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For large values of angle of attack stability the roots will be
the typical short period heavily damped motion of the subsonic air-
plane providing ZLx and \’Y\é are of sufficient magnitude. If there
is angle of attack instability, then the roots will be two convergences,
one tending towards a divergence as the instability increases.

Now the over-all dynamic characteristics as obtained from the
3 x 3 determinant will be investigated. Certain basic relationships
between the derivatives exist that are utilized to make the root locus
diagrams quite general with regard to the influence of other deriva-
tives. One would expect, in particular, that for similar types of air-
craft, e.g., single rotor helicopters, the force equations would be
similar since the derivatives would largely ¥esult from performasnce
considerations. There may or may not be similarities in the moment
equation depending upon the type of aircraft and the configuration
under consideration, and upon the degree of control that can be ex-
erted in the design. As previously mentioned, the stability deriva-
tives slong the major diagonal of the determinant (4), from physical
considerations can be expected to bear a general relationship to one
another. These terms determine the dynamics when the degrees of free-
dom are not coupled. Thus in this situation,vit would be expected that
all alrecraft would possess similar dynamics. If the veloclty stabllity
( ™y, ).and the angle of attack stability ( g ) are equal to zero
the pitching mode is uncoupled from the angle gf attack and velocity

modes .
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When =Yg = O 5 (4) becomes
i (¥u—2) Fer - %
l (me -2 x

O

and the characteristic equation is:
>\(\'“B"'x) { (2“")\)(7&\1_— >\) - K Zu_} =0 (1)

The angle of attack and the velocity are coupled due to Zw. and
Aok . It will be found that as long as Aw. and Z are well

separated, this coupling between angle of attack and velocity is
usually weak and can be neglected. This is generally true of both
the airplane and the helicopter, and is determined by the condition
that the roots of QN&"')\) (Zo( = >\> - Y Zw = O are
approximately My, and Z K - In this case, the characteristic
equation willve N (Ng=N)(Zot=X)(Hu~— >\) =0

Thus the dynamics of any airframe with no angle of atback sta-
bility and no velocity stability will be essentially uncoupled and
will consist of:

a) In pitching rate, a raplid convergence.

b) In angle of attack, a rapid convergence.

c) In velocity, a slow convergence.
This basic relationship is inherent in the classicsl approximations as
will be seen. There will, of course, be some interaction between the
equstions due to the gravity and inertia terms. For example, the
weight‘component term in the horizontal force equation (—WAS8) will
act as a forcing function in the evalunstion of control response in the

uncoupled situwation,
18




The dynamics of +the helicopter or airplane will be largely con-
trolled by the magnitude and sign of My, and WNo , and the root
location for the uncoupled situation is typical of most aircraft,
appearing on the complex plane as follows from equation (7)‘ The zero
root arises from the fact that the moment equation is uncoupled and

has no dependence upon pitch angle.

\—mw\(k\ /_ ‘Ry\ \n%/

—F PR e

2-}( TT\E} /

m\c{% e

Figure 4: The dynamics of an aircraft with no velocity stability
and no angle of attack stability (Mg = Mw = O

Gererally these time constants will be well separated as shown.
( “Zow may be greater or less than M@ ). However, the typical heli-
copter usually has smaller values o:t" L and meé than the air-
plane. For the helicopter through the level flight speed range this
configuration will remain approximately the same. \YW‘Will increase

with speed while mé and Z.og will remsin approximately constant.
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Now ceonsider in what manner the variable phase and magnitude re-
lationships are dependent upon the characteristic roots. It is neces-
sary to use only two of the three equations of motion. Since the
character of the force equetions is typical and the static stabllity
derivatives will be varied, relationships between the variables for
any location on the complex plane are obtained from the force equations.

The foree equations are:

¢ UU =
(X\L‘")\)féﬁg + o Xox %ﬂ = %

g '\, X i
{ - Z. o s ==~ =)
Z:u el ~+ ( CH >\> eﬂ }\ (851.,
and
-%%i = ;@ { % -<??> ~+ 'Cé,Zlg%
4 Crum2 )(Zo= X)) = Y Zn
X _ = F2a— (K= ) (88)
o, (Xu-)\) (Zm("')x)“‘ ¥Xa Lo
) , . LLi g :
Thus each value of }\ determines s value of @ Sl s . These
§ )

cuantities can be considered as vectors on the complex plane and com-

puted from this viewpoint. For the approximations & <<} and
N

that the roots of { Yy~ A ) (Zx - A Y- AxLu = O are

approximately X and Zg , the velocity to pitch angle relation-

) <
ghip reduces to %—B = Ya- n ) and for any values of h large
' ; S i F3 3 T My - i 14 4
compared to Ky, this simplifies further to S ) . This
1

approximation 1s easily interpreted physically. It represents the
fact that the major terms in the horizontal force eguation are the

horizontal force produced by the welght component along

20




the K axis and the acceleration resulting therefrom. In this case,
the horizontal acceleration, and the fuselage pitch angle will always
be approximately out of phase. As the modes become faster and faster,
i.€., 88 >\ increases, the velocity content of the mode becomes
smaller and smaller.
The numerator of f%gL is the classical phugoid, and therefore
]

Xy

e,
be no angle of attack variation in that mode. When Zo > Ku. and

as >\ approaches the classical phugoid - O i.e., there will
the classical phugoid is oscillatory, the mode ratios on the complex
plane are shown in Figure 5. For any given roots, the variable re-
lationships are fixed. The:magnitude and phase of & derivative is de-~
termined by changing the magnitude by V W*+ T2 and advancing the
vector counter-clockwise by the angle'Ybﬂq_i Eg? . An estimate of
the significance of the terms in various areas of the complex plane can
be méde by comparing the product of derivative of interest and the

magnitude of the variable, e.g., Ny XL 4o My, ——~ . Also the

=)
phase relgtionships are instructive as to g;milar effectihfrom differ-
ent derivatives. For example at (a) where the angle qf attack and the
velocity are 180° out of phase it would be expected that a change in
velocity stability (+) or a change in angle of attack stability (-)
would have a similar influence on the dynamics. At (b) where the ve-
locity and sngle of attack are approximately in phase, their influence
would be opposite. This is verified by the root loci later. Now the
variable content as dependent upon the fregquency and the damping of the

mode can be seen. The lightly demped mode involves primarily velocity

and pitch angle perturbations, angle of attack variations are of the
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order of 1/2 the pitch angle variations, generally enough such that

the influence of angle of attack cannot be neglected except when the
static stebility with angle of attack 1s large and the classical
phugbid roots are approached. The heavily damped motion consists
primarily of angle of attack change and pitch angle change and the
velocity change 1s essentially unimportant. Note that the associ-
ation of these mode characteristics with the roots is due only to the
force equation characteristics. The variable content of convergences
and divergences depend upon thelr location with respect to the un-
coupled dynamics, ( Y, Zo R Mg ), e.g.. Slow convergences will
have a significant velocity content, while fast convergen.ées will not.

Thisg property of the equa,tioné can be used in more complicated
problems to determine the composition of each mode.

Now the manner in which the dynamics wvary with the velocity
stability ( YN ) and the angle of attack stability ( Mo ) will be
investigated. These two important terms in the eguations of motion
vary considerably on helicopters and aircraft and may, to some extent,
be controlled in the design, Four situations are considered for angle
of attack stability: +the influence of angle of attack stability and
instebility when Z 18 negative (the classical phugoid is oscillatory),
and when Zu_ is positive (the classical phugoid is a convergence and
a divergence); one for veloclty stability: the influence of wvelocity
stability when X—cgf is not negligible compared to l. The effect of
velocity stability when 2% ¢ < is indicated by the hovering
minor ss the horizontal force and moment equations are not coupled to

the vertical force equation and { )\ — Zox ) is a factor of the
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characteristic eguation as indicated by equation (7). These cases in
clude the consideration of the subsonic airplane (i.e., negligible ve-
locity stability) and the single rotor helicopter.

The characteristic equation for the following root loci is ob-

tained by expanding (4) along the moment row:

A(ma=2) | Gum A zamn) = *azu ]
= M {%(Xw*’ik)iﬂ%m}“mu-%{/)\{\—%)”Zo‘ },:O

Assuming the term YW ZLu negligible and Ko 44 Ca/ as discussed

previously the characteristic equation becomes:

A (&= )k n)(Za—2) - My TG X))+ %Zu.,}

Mg {/\-‘zcz} e

Dynamices as g function of angle of attack stability

Case l: Phugeid oscillatory; angle of attack stability

The locus of roots of the characteristic equation for all values
of Yy less than O will present the range of dynamics of the subsonic
airplane. The zeros of N gt are of the classical phugoid roots, and

the root locus is obtained from the characteristic equation
M- A)her N X) = Ma { A X) +gzut=0

2h
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Figure 6a: The dynamics of an airframe as a function of angle
of attack stability. Phugoid oscillatory. (WMot <O)

This locus presents the characteristic roots of the longitudinal motion
of the subsonic airplane. Two oscillations are produced for any ap-
precigble stable value of Mot , one arising from the coupling of the
pitching rate mode and the angle of attack mode, the other arises
through coupling of the zero root and the velocity mode. These two
modes will be referred to as the heavily damped mode and the lightly
damped mode to distinguish them from the classical airplane modes. As
Mg is increased the classical picture is approached of a lightly
damped long period mode, {(the limiting case is the classical phugoid
motion) and a heavily damped short period motion. Therefore, the
classical approximations depend upon a significsnt amount of angle of
attack stabllity and the relationship originelly assumed that

Qméb&zd“>}h§u“ . When these guantities are not well separsted the
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claseical approximations will become less successful, and the tendency

towsrds instability will increase in the light damped branch., The
classical approximations became exact as YN —P—=0 o 'The
ctual damping of the phugoid is less than the classical phugoid ap-
proximation of 7::%‘:&.: due to coupling between the two modes and is
difficult to approximste in a simple fashion. By examination of
Routh's Discriminant, a criterion for the occurrence of instability
can be obtained. If }me Nl 2«% 2“‘- a then there will
Mg Zsx

be a ra,ngc of angle of attack stabl lity in *Arhiﬂh the lightly damped
oscillation is dynamically unstable.

Case 2: Phugold oscillatory; angle of attack lrnstability

The locus of roots is obtained from the previone characteristic

ecustion by changing the sngle condition.

Figure 6b: Dynamics of an airframe as a furnction of angle of
attack instebility. Phugoid osecillatory. ("™Mis >O)




Here we obtain a heavily damped oscillatory mode, referred to as the
"third mode" in (Reference 6) and a convergence and a divergence. The
divergence is a result of the static instability of the airplane. It
is interesting to note that, in this case, a large value of angle of
attack instability also tends towards the classical phugoid mode.

Case 3: Phugoid non oscillatory: Angle of attack stability
The lscus of roots is again obtained from the previcus character.-

istic eguation with new zeros due to the difference in 2o

S £ = R

Zx ™G P

Figure 6c: Dynamics of an airframe as = function of angle of
attack stability. Paugeid non oscillatory. { T‘ﬂq <0}
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Here there is essentially no change in the heavily damped branch.
However, the lightly damped branch is quite different. The sircraft
is statically unstsble , i.e., the coefficient of ;QD in the charac-
teristic eqpation has changed sign due to Zwi . Increasing the
angle of attack stability increases the rate of divergence of the
instability. It is interesting to note, however, that for reasonable
values of \m\“ the classical approximations still apply.
Case 4: Phugoid non oscillatory; angle of attack instability

This root leocus is similar to case 3, except that the anéle COmt~

dition is changed.

LW
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Figure 6d: Dynamics of an ailrframe as s function of angle of
attack ingtability. Phugoid non osecillatory.

M > O)
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Here, as in Case 2, the heavily damped branch in non-oscillatory,

while the lightly damped branch is oscillatory, and surprisingly,
may even be stable for small values of "Ny . For large values of
angle of attack Instability a severe oscillatory instability occurs,
tending towards a rapid divergence.

Dynamics as a function of Veloecity Stability.

This situation differs from the hovering case as a result of P
being significant (If X = M= © then angle of attack vari-
atior appears only in the vertical force equation. The oscillatory
mode is described by the other two equations). This rcot locus is

cbtained from the characteristic equation in the form

MMe =2 )%= Zo= H) + M { N EG+ %) g R} = O

«n—ﬁg@a ---'\—‘-”fG{} S K

ot LR X

Figure 7: The dynawlcs of an sirframe as & function of
Velocity Stability. YN, > O
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The lightly damped or unstable branch is quite similar to the hover-
ing situation, while the heavily damped branch msy either consist of
g heavily dampedAﬁong period pscillation as shown or two convergences,
depending upon the sign and magnitude of K¢t . Thus when M > O
the "hovering" dynamics represent a good approximation to the dynamics
of the helicopter in forward flight. The sctual dynamics differ from
the "hovering" dynamics primarily due to angle of attack stability.
Also note that in the situation when _7%<< b s Ma= 0 5 (N=Zy)
is a factor of the characteristic eguation.

Thus the manner in which the dynamics of the alrframe vary with
angle of attack stability samnd instability and with verying degrees
of wveloeity stability has been shown.

Comparisons of Figure 6a with Figure 7 demonstrates the differ-
ence between the longitudinal dynamics of an alrcraft when the static
stability of the aircraft is due to angle of attack stsbility, and
when it is due to velocity stabilility. There is one region of simi-
larity when the velocity stability is very small, its varistions
af'fect the lightly damped mode in a similar fashion to the varistions
of angle of attack stability. This region is restricted spproximately
to the period of dyramics where classical phugoid is oscillatory and
the periocd of the lightly damped motiom is longer than the classical
phugoid period. The roots indicated on these two Flgures by an aster-
isk, are a comparison of dynamics when the static mergin of the air-
plane (Reference T) is the gzme, but arises from thesge two different

SOUrCes.,




Now the influence of combinations of these two derivatives will

be considered. In Figure 8a the influence of angle of attack sta-
bility and instability'fdr various values of velocity stability is
indicated, and in Figure 8b, the influence of velocity stability at
various values of angle of attack stability is presented. Only the
situation where the classical phugoid is oscillatory is considered
here.

Discussion will be restricted to oscillatory characteristics.
Corresponding roots on the two branches can be egtimated from the
fact that the sum of the damping of the two modes isg a constant when
only the static stability derivatives are varied.

The poleg for the following root loci are obtained from previous
diagrams snd the zeros are the same as before. For example, the poles

for Figure 8s are obtalned from Figure 7 for various values of YW »

and the zeros are the same as in Figure fa.




Figure 8a: The dynamics of an airplane ss s function of angle of
attack stablility for different velocity stability.
(Pangoid oseillstory)

There are two regions to consider with regard to the lightly
damped mode: One previously mentioned, when the frequency of the
motion is less than the classical phugoid, and the other when the
frequency 1s greater than the classical phugoid frequency. In the
former region, the motion is of long period and slightly stable.

Both Mg and YNy produce similar influences upon the dynamics,
reducing the period snd the damping. As the velocity stability in-

cregses, the period becomes less than the classical phugoid, and the
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influence of argle of atback stability becomes more and more bene-
fiecial, decressing the instability and lengthening the period, always
tending towards the clasgical phugoid. The influence of angle of
attack ipstability becomes more and more severe, strongly increasing
the dynsmic instability and%lengthening the period somewhat. In-
creasing the velocity stability is rarely beneficial, except in
regions where there are large amounts of angle of atback stability.
Even in this condition it is hardly desirable since it primarily re-
duces the period of a lightly damped oscillation, changing the damping

very little.,

/ /.g 7 /

4

_/ / 7‘. Iwuc,o;’::u:-
W ' Ty
/"‘rﬁa:{o /z/ / \ /

. | el 2

Figure 8b: The dynamics of an airplane as a function of velocity
stability for verious valussz of angle of sttack
stability and instability.
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If the phugold is not oscillletory the situstion will be similsr. The
significant difference occurs due to the fact that increasing the angle
of attack stability willl eventuslly cause s divergemce to occur when
the coefficient of ;\é changes sign. Instsbility oceurs when
%m{‘uz@) \W}m Zgg% the influence of both derivatives is similar to
the previcus case except that there 1s no region of similarity in the
lightly damped mode. Increases in WNy. result in oscillstory insta-
billity and reduction in period. Angle of attack steblility stabilizes
the motlon and always increases the period, and a large degree nay
cause static instebllity of the airplane.

Thus desirgble charscteristics of the long period motion are ob-
tained by maintaining YN . as small as possible, and obtaining &
large amount of angle of attack stability. However, in the situation
where Zwoo 1s such that there is a 1lift loss with im\:réa,.se in speed
maintaining Emw ldh\mm Z ,Ld\ . In this lstter situation it may
be deslrable to increase the velocity stability to prevent this dy-
namic instability. This is perhaps the only situatiorn in which an in-
cregse in velocity stability 1s desirable.

Now the heavily damped mode will be comeidered. If "Ng and Zgy
are not large then a large degree of angle of sttack stabllity may
mgke the dampirng ratio of the hesvily damped mode smell enough to be
undezirable, IFf the criterion of Reference 8 ig sstisfied with re-
gard to mé s then this should not be a probvlem, Increasing angle
of attack stability always raises the Trequency of the heavily damped
mode. An incresse in velocity stebility lowers the frequency and

generally \increa,ses the dawping of the hesvily dsmped mode.
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From these considerations it can be seen that the comments of
Reference 9 with regard to the modes of the HO-~3S helicopter would
be generally true for smy alreraft with a significawt amount of ve-
Iocity stabllity and insufficient angle of attack stability.

The influence of other stability derivetives may be determined
from root locus technigues. However, for an over-all view we can
see the primary influerces from the previous root loci. ¥y provides

( % in most cases 1s the

damping of the lightly :l=mped mode.
maximum amount of damping). It has little influence on the heavily
damped mode. “TNg and Z g govern the damping of the heavily
damped mode and influence the lighkly deamped mode. Increase in pitch
demping ( YW@ ) is alwsys helpful with regard to the lightly damped
mode, increassing the period and damping. However, exbremely large
velues will be reguired to stabiliize this mode unless WKy, 1is large.
The infiuence of Z o on the lightly damped mode depends upon the
values of YWu and YN & since the minor of Zg 1s the "hovering"
minor. If angle of attack stability is present, the damping of the
lightly damped mode 1s better than the hovering csse and thus an in-
crease in A will be destsbilizing. For angle of attack insta-
bility, an increase in g will be stabilizing. The importance of
this effect depends upon the size of Yy -

An estimate of the ilmportsnce of derivatives such as My may
be determined by noting the root of MW M+ M= O . If

this root >,\“m“ = %%ié i= of the order of the roots under consider-
Vo4

ation on the root locusg, then the influence of m& should be taken

into aeeount. If 1t is much lsrger than the megnitude of the roots




under consideration, then (ﬂé& may be neglected. It is on this basis

that terms such as %¢& can be neglected.

The mode ratios for all the foregoing root locus diagrams are indi-
cated on Figure 5.

It has been shown t@at the character of longitudinal motion of an
alrcraft is largely determined by the static stability derivatives
( Me. and YN A ). The characteristic roots normally fall into
two groups:

1. A well damped oscillation or two comparatively fast convergences.
Whether or not this mode is oscillatory depends primarily upon angle
of attack stability. The damping of this mode is governed by the 1ift
curve slope of the aircraft ( Zgy ) and the pitch damping ( YN g )

2. A lightly damped or unstable oscillation, or a slow convergence
and divergence. The character of this mod; depends to a large extent
on both My and (T»o& . The maximum damping of this mode is dependent
upon the drag.

. If there are two oscillations; then except in the case where Wy,
is very small, and the influence of (u. and TNy on the lightly
damped mode 1s similar, their effect on the fregquenecy of these two
oscillations is opposite. An increase in angle of attack stability
raises the frequency of the heavily damped mode, and lowers the frequency '
of the lightly damped mode. Increase in velocity stability ralses the
frequency of the lightly damped mode and lowers the frequency of the
heavily damped mode. It appears then, that unless 4 large amount
of angle of attack stability is present, if two oscillations are

present, they will tend to be of similar period.

(3]
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Now the motion of the single rotor helicopter will be examined.

The single rotor helicopter will have smaller values of (Y\é and
Z.o¢ than the airplane. However, from the foregoing root loci,
this 1s not a fundamental difference. The fundamental differences
lie in the static stabllity derivatives and the fact that at high
gpeeds there can be a 1ift loss with increase In speed. One view-
point, since the single rotor helicopter will uwsually pozsess a\sigm.
nificant amount of velocity stabllity, is to consider the hovering
motion described by the hovering minor as basic. (As a rough approxi-
mation, MWy, and YWlg may be considered constant with forward
speed). The dynamics in this case will consist of sn uncoupled con-
vergence in angle of attack, a convergence in pitch angle and angie
of attack, and an unstable oscillation involving all three veariables,
Now the iﬁfluence of angle of atbtack stability on this mobtlon must
be consgidered. The typleal varistion of angle of attack stabllity as
a function of forward speed on a helicopter is as follows (Refewences
L and 9). Normally at very low spesds the angle of atback stability
will be negligible., At a scwewhat higher speed, in the optimur con-
flgueation it is possible Lo obtain sorme anglc of ghtsck stabllity
snd, as specd incregses, this wlll develop into a strong angle of
sttack irstablility with no horisontal tail. A horizonial ftell of

sufficient size, can reversze this trend and provide s large smount
of angle of stbtack stability (Reference 4). With no tail, st low
speeds there way be vwo osciliambtions present, ususlly of simiiar

Prequency, since TV 1s not large enough to make the heavily damped

mode of the high fre wency typical of the airplane. The lightly
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damped mode may be approximately neutrally stable. At high speeds,
there will be two convergences, one considerably faster than the
other, and sn unstable oscillation., With the horizontal tailil the
gituation can be altered to produce two oscillations at high speed,
one well damped and of somewhat shorter period than the other. The
lightly damped motion may even become two convergences, or & COL-
vergence and a divergence for sufficiently large ™My vwhen a iift
loss with speed is present. e
It s difficult to determine a second order approximstion to
the lightly damped motion when there is a sigrnificant amount of ve-
locity stability present. The approximation suggested in Reference
10 applies only when the period of the motion is very long or when
there is a large degree of angle of attack stability and is misleading
particularly with regard to the influence of velocity stability on the
damping of the motion in the case of the typical helicopter. Regiorns of
valldity of variocus approximations can be rapidly estimated by in-
spection of the characteristic eguation in factored form., For evample
the characteristic ejuation of {4) may be written as:
2= 8) (M= Zo) (A= %) + Mt PR3 Zun C@»}j
* Mg )&“’ 21413 = Q

and in the region of the neavily damped mode in Figure Sa
ﬁ)\% >p h’\uj and \X}\%l b4 \X%Zu% , therefore
Wn- ma)( A= Zat) + Ma X + mlwa%ﬁ}\ - Za)= O

gimplifying the eguation to some degree, and indicating the influence
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. . 2
of My, on the heavily damped mode. Now if | M is large

and %;m%fﬁ Z ot this reduces to the short period spproximation

N L(x”mé)<>\*—zo§> + M } =
In this way the consistancy and range of application of various ap-
preximations for various roots can be duickly estimated and the im-
portant terms contributing to the mode can be seen.

Thus, in conclusion, a convenient viewpoint for the longitudinsl
dynamics has been presented which makes it possible to obtain a good
physical basis from which to consider the dynamics of the airplane,
and In particular to visualize in a general way the influence of the

static stabllity derivatives on alrplane motion.
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1.)

3.)

CONCLUSIONS

The longitudinal dynamics of an aircraft consist of a heavily

damped oscillation {or two convergences) and a lightly damped

or unstable oscillation in the usual case where ‘E:lg ' s
Z ! . —
—— >':> \ and the aircraft is statically
~~.Ugp * M

stable. The validity of the classical short period and phugoid
approximations depend upon the above relaticnship and upon angle

of attack stability. The larger the angle of attack stability,
and the greater the separation of ﬁ:éa and = from ___9;
ke YL

the better the approximations.

The presence of veloclity stability tends to invalidabte the
classical approximations and Influences, in particular, the
lightly damped motion, decreacing the period and making the
motion unstable.

Both modes of motion occur in all three variables. The velocity
and the pitch angle predominate in the lightly damped‘motion?
and the angle of attack and pltch angle predominate in the
heavily damped motion. As the classical approximations are
approached, the velocity change becomes negligible in the
heavily damped mode and the aungle of atbtack change negligible

in the lightly damped mode.
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